ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
G. S. Sidhu, W. E. Farley, L. F. Hansen, T. Komoto, B. Pohl, C. Wong
Nuclear Science and Engineering | Volume 66 | Number 3 | June 1978 | Pages 428-433
Technical Note | doi.org/10.13182/NSE78-A27226
Articles are hosted by Taylor and Francis Online.
We have remeasured the spectra for the neutron and secondary gamma rays due to a 14-MeV neutron source by replacing liquid nitrogen, used in our earlier work, with liquid air (LA) as the transport medium. The deuterium-tritium neutron source was located at the center of the sphere (129.3-cm radius) of LA (20.7 at. % O2 remainder N2). Scintillation detectors were located at a distance from the sphere. Using time-of-flight techniques, we obtained approximate neutron energy information by measuring the time-of-arrival of neutrons at the detectors. We also measured, in a 60-ns time window before the arrival of 14-MeV neutrons, the gamma-ray spectrum that results from nonelastic neutron interactions in LA. To compare the measured spectra with code calculations, we folded the detector efficiencies and experimental parameters into the calculated output of TARTNP, the coupled neutron-photon Monte Carlo transport code of Lawrence Livermore Laboratory. The calculated spectra for gamma rays and neutrons and the calculated radiation doses show good agreement with the measurements. The results of this work provide a benchmark point on a radiation dose versus range-in-air curve obtained by the TARTNP calculations.