ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
WEST claims latest plasma confinement record
The French magnetic confinement fusion tokamak known as WEST maintained a plasma in February for more than 22 minutes—1,337 seconds, to be precise—and “smashed” the previous record plasma duration for a tokamak with a 25 percent improvement, according to the CEA, which operates the machine. The previous 1,006-second record was set by China’s EAST just a few weeks prior. Records are made to be broken, but this rapid progress illustrates a collective, global increase in plasma confinement expertise, aided by tungsten in key components.
G. S. Sidhu, W. E. Farley, L. F. Hansen, T. Komoto, B. Pohl, C. Wong
Nuclear Science and Engineering | Volume 66 | Number 3 | June 1978 | Pages 428-433
Technical Note | doi.org/10.13182/NSE78-A27226
Articles are hosted by Taylor and Francis Online.
We have remeasured the spectra for the neutron and secondary gamma rays due to a 14-MeV neutron source by replacing liquid nitrogen, used in our earlier work, with liquid air (LA) as the transport medium. The deuterium-tritium neutron source was located at the center of the sphere (129.3-cm radius) of LA (20.7 at. % O2 remainder N2). Scintillation detectors were located at a distance from the sphere. Using time-of-flight techniques, we obtained approximate neutron energy information by measuring the time-of-arrival of neutrons at the detectors. We also measured, in a 60-ns time window before the arrival of 14-MeV neutrons, the gamma-ray spectrum that results from nonelastic neutron interactions in LA. To compare the measured spectra with code calculations, we folded the detector efficiencies and experimental parameters into the calculated output of TARTNP, the coupled neutron-photon Monte Carlo transport code of Lawrence Livermore Laboratory. The calculated spectra for gamma rays and neutrons and the calculated radiation doses show good agreement with the measurements. The results of this work provide a benchmark point on a radiation dose versus range-in-air curve obtained by the TARTNP calculations.