ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
WEST claims latest plasma confinement record
The French magnetic confinement fusion tokamak known as WEST maintained a plasma in February for more than 22 minutes—1,337 seconds, to be precise—and “smashed” the previous record plasma duration for a tokamak with a 25 percent improvement, according to the CEA, which operates the machine. The previous 1,006-second record was set by China’s EAST just a few weeks prior. Records are made to be broken, but this rapid progress illustrates a collective, global increase in plasma confinement expertise, aided by tungsten in key components.
K. Wisshak, F. Käppeler
Nuclear Science and Engineering | Volume 66 | Number 3 | June 1978 | Pages 363-377
Technical Paper | doi.org/10.13182/NSE78-A27219
Articles are hosted by Taylor and Francis Online.
The neutron capture cross sections of 240Pu and 242Pu were measured in the energy range from 10 to 90 keV. The capture cross sections of both 197Au and 238U were chosen as standards. Neutrons were produced via the 7Li(p,n) reaction with the Karlsruhe 3-MV pulsed Van de Graaff accelerator. Capture events were detected by a Moxon-Rae detector. The high neutron flux available at flight paths as short as ∼10 cm offers a signal-to-background ratio one order of magnitude better than obtained in previous experiments. The cross-section ratios could therefore be determined with a total statistical and systematic uncertainty of 4 to 10% for 240Pu and 6 to 10% for 242Pu. The results agree with previous data, while discrepancies to the evaluated files ENDF/B-IV and KEDAK 3 were found (up to 30% for 240Pu and up to 50% for 242Pu).