ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Three nations, three ways to recycle plastic waste with nuclear technology
Plastic waste pollutes oceans, streams, and bloodstreams. Nations in Asia and the Pacific are working with the International Atomic Energy Agency through the Nuclear Technology for Controlling Plastic Pollution (NUTEC Plastics) initiative to tackle the problem. Launched in 2020, NUTEC Plastics is focused on using nuclear technology to both track the flow of microplastics and improve upstream plastic recycling before discarded plastic can enter the ecosystem. Irradiation could target hard-to-recycle plastics and the development of bio-based plastics, offering sustainable alternatives to conventional plastic products and building a “circular economy” for plastics, according to the IAEA.
G. P. Ford
Nuclear Science and Engineering | Volume 66 | Number 3 | June 1978 | Pages 334-348
Technical Paper | doi.org/10.13182/NSE78-A27216
Articles are hosted by Taylor and Francis Online.
Nuclear state and level densities as a function of excitation energy, angular momentum, and parity have been calculated by a combinatorial method for 56Fe, 59Co, 60Ni, 61Cu, 62Ni, 63Cu, and 65Cu. Single-particle states for both Woods-Saxon and Nilsson potentials were used. These calculations were done with zero and nonzero pairing energy. State densities as a function of excitation energy have been calculated by an approximate inversion of exact partition functions; they agree well with state densities calculated by the combinatorial method. Average excitation energy as a function of temperature has been calculated from the partition function for each of the nuclei. Level densities as a function of energy, calculated by the combinatorial method, are compared with measured level densities. The agreement is either good or very good for most, but not all, of the nuclei. No evidence was found that must be interpreted as indicating a failure of the independent-particle model at higher excitation energies. For level density calculations with zero pairing energy, there is a suggestion, but no clear indication, that Woods-Saxon single-particle states are better than Nilsson single-particle states. Calculated and measured spin cutoff parameters are compared for 56Fe and 61Cu. Single-particle states for Nilsson-type potentials tend to give higher state and level densities than single-particle states for Woods-Saxon-type potentials. This tendency is not due to the larger number of single-particle states for Nilsson-type potentials, and it can be compensated for by using a nonzero pairing energy. The calculated fraction of negative-parity states is about one-half as expected, but this fraction varies much more than expected from one energy interval to another. The calculated M-value distribution is approximately Gaussian as expected.