ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
C. R. Weisbin, E. M. Oblow, J. H. Marable, R. W. Peelle, J. L. Lucius
Nuclear Science and Engineering | Volume 66 | Number 3 | June 1978 | Pages 307-333
Technical Paper | doi.org/10.13182/NSE78-3
Articles are hosted by Taylor and Francis Online.
This paper presents the first results of a comprehensive application of the sensitivity theory developed for the FORSS code system to the analysis of fast reactor integral experiments. A variety of assemblies and performance parameters were studied to determine the nuclear data sensitivity as a function of nuclide, reaction type, and energy. Comprehensive libraries of energy-dependent sensitivity coefficients were developed in a computer retrievable format for several critical assemblies. Uncertainties induced by nuclear data were quantified using preliminary energy-dependent relative covariance matrices evaluated with ENDF/B-IV cross sections and processed for 238U(n,f), 238U(n,γ), 239Pu(n,f), 239Pu(n,γ), and . Calculational results, cross-section covariances, and integral results and their covariances were used in a consistent fashion to improve uncertainty estimates of fast reactor core performance. A first attempt was made to quantify specifications for new cross-section measurements required to satisfy specific design goals at minimum experimental cost. An analysis of several critical experiments indicated that design accuracy goals of 0.5% in k and 2% in the central 238U capture: 239Pu fission ratio (28c/49f) ratio in mixed oxide liquid-metal fast breeder reactor cores are unlikely to be attained in the near future. This assumes that the nuclear data are based only on microscopic measurements, and the current cross-section measurement program is not changed dramatically. Current estimates are 2.3% in k and 7.3% in central reaction ratio using only differential covariance information. Using the measurements in ZPR-6/7 for k and central 28c/49f in a cross-section adjustment scheme with assigned uncorrected standard deviations of 1 and 2%, respectively, standard deviations of the same parameters were computed to be 0.7 and 1.8%. Results of integral experiments, therefore, are needed to improve uncertainty estimates of reactor performance for current fast reactor design work.