ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
W. F. G. van Rooijen, J. L. Kloosterman, T. H. J. J. van der Hagen, H. van Dam
Nuclear Science and Engineering | Volume 157 | Number 2 | October 2007 | Pages 185-199
Technical Paper | doi.org/10.13182/NSE07-A2721
Articles are hosted by Taylor and Francis Online.
The Generation IV gas-cooled fast reactor (GCFR) is intended to have a closed fuel cycle: During irradiation enough fissile material is produced to allow refueling of the same reactor, adding only fertile material. This is the well-known "zero breeding gain" objective. In this paper a theoretical framework is derived to track compositional changes of the fuel during irradiation, cooldown, and reprocessing, in order to calculate the reactivity of the new fuel compared to the original fuel material. Using first-order perturbation theory, the effect of variations of the initial fuel composition on the reprocessed material and breeding gain can be calculated. The theory is applied to the fuel cycle of a 600 MW(thermal) GCFR. The result is that the change of material composition during cooldown has a nonnegligible effect on the breeding gain. A truly closed fuel cycle can be obtained if the reprocessing efficiency is high enough (<1% loss). If this high efficiency cannot be obtained, adding a small amount of minor actinides (Np, Am, Cm) to the new fuel results in a zero breeding gain. Perturbation theory provides a powerful tool to estimate the effects of changing fuel cycle parameters.