ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
WEST claims latest plasma confinement record
The French magnetic confinement fusion tokamak known as WEST maintained a plasma in February for more than 22 minutes—1,337 seconds, to be precise—and “smashed” the previous record plasma duration for a tokamak with a 25 percent improvement, according to the CEA, which operates the machine. The previous 1,006-second record was set by China’s EAST just a few weeks prior. Records are made to be broken, but this rapid progress illustrates a collective, global increase in plasma confinement expertise, aided by tungsten in key components.
I. Lux
Nuclear Science and Engineering | Volume 66 | Number 2 | May 1978 | Pages 258-264
Technical Note | doi.org/10.13182/NSE78-A27208
Articles are hosted by Taylor and Francis Online.
The estimation of the variances of different estimators is always a crucial point in practical Monte Carlo calculations. The purpose of this Note is to formulate conditions that, in simplified situations, make track-length estimators more efficient than collision estimators for the estimation of reaction rates in a region. Starting from recent results of Amster and Djomehri in the first section of the Note, an upper limit is given for maximum extension of a nonmultiplying region. In the second section, assuming homogeneous medium and monoenergetic nonmultiplying transport with isotropic collision in the laboratory system, approximate conditions are described concerning the optical mean-chord-length of the region in terms of first-flight collision probabilities. Wigner rational approximation to the first-flight collision probability results in a surprisingly simple upper limit for the mean-chord-length of the region. Finally, the effect of the approximations to the results is discussed and lower and upper bounds, depending on the nonabsorption probability, are established for the reaction rate to be estimated. It is shown that, in practical cases, the approximations provide a lower value of the maximum extension still favorable from the viewpoint of the track-length estimator than the exact calculation.