ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Kiminori Shiba
Nuclear Science and Engineering | Volume 65 | Number 3 | March 1978 | Pages 492-507
Technical Paper | doi.org/10.13182/NSE78-A27180
Articles are hosted by Taylor and Francis Online.
Material bucklings have been determined as functions of 235U enrichment in UO2 (0.7, 1.2, and 1.5 wt% 235U), PuO2 enrichment in PuO2-UO2 (0.54 and 0.87 wt% PuO2), fissile content of plutonium (91 and 75% Pu-fissile), lattice pitch (Vmod/Vfuel: 7.4 and 9.9), and coolant void fraction. The reference loading of 1.2 wt% 235U-enriched UO2 clusters was progressively replaced by the test clusters. Buckling differences resulting from the substitutions were analyzed by the new second-order (iterative) perturbation method, on the assumption that neutron diffusion is isotropic and that no difference in diffusion coefficients exists between the two lattices. This analysis takes into account the effect of distortion in radial neutron flux distribution in the substituted core without any iterative correction procedure that is usually adopted in the first-order perturbation method. Also, it is not necessary in the case of the present analysis to introduce any usual intermediate region for taking into account the effect of spectrum mismatch between the two lattices. The material buckling differences between the test and reference lattices, which are in the range of −10.2 to 9.1 m−2, were determined within 3% of uncertainty.