ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
WEST claims latest plasma confinement record
The French magnetic confinement fusion tokamak known as WEST maintained a plasma in February for more than 22 minutes—1,337 seconds, to be precise—and “smashed” the previous record plasma duration for a tokamak with a 25 percent improvement, according to the CEA, which operates the machine. The previous 1,006-second record was set by China’s EAST just a few weeks prior. Records are made to be broken, but this rapid progress illustrates a collective, global increase in plasma confinement expertise, aided by tungsten in key components.
Y. Gur, S. Yiftah
Nuclear Science and Engineering | Volume 65 | Number 3 | March 1978 | Pages 468-476
Technical Paper | doi.org/10.13182/NSE78-A27178
Articles are hosted by Taylor and Francis Online.
The currently used formalism for neutron cross-section representation in the unresolved resonance energy range is based on the statistical parameters of the population of Breit-Wigner resonances. The present work introduces practical formalisms, based on parametric representation of the shielding factor curves, by which the values of effective cross sections can be obtained simply and quickly in the unresolved range, and suggests their use for neutron data representation. These formalisms were found to be compatible with such existing codes as MC2, ETOX, HAMMER, ENDRUN, and MIGROS, and with such existing nuclear data files as ENDF/B and KEDAK. Each formalism is based on one interpolation scheme in temperature and one in σ0. The accuracy of four schemes in temperature and three schemes in σ0 was checked. Of these, three temperature schemes and one σ0 scheme were found to have better than 1% accuracy in the entire unresolved region, thus yielding a formalism with better than 2% accuracy for representation. Observed spatially dependent self-shielding factors are transformed into pseudo-background cross-section-dependent (Bondarenko-type) self-shielding factors. Numerical values of the transformation for 235U and 239Pu self-shielding factors are given. It is shown that the formalisms can be used for the preprocessing of current nuclear data files in the unresolved range.