ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
B. Wei-Teh Lee, R. E. Kaiser, J. T. Hitchcock, C. S. Russell
Nuclear Science and Engineering | Volume 65 | Number 3 | March 1978 | Pages 429-440
Technical Paper | doi.org/10.13182/NSE78-A27174
Articles are hosted by Taylor and Francis Online.
An indirect experimental technique for determining the expansion coefficient was developed to provide uncertainty estimates for expansion coefficient calculations. This technique uses an R, Z reactivity worth map synthesized from small-sample reactivity traverse measurements for major materials over the reactor core and blanket regions. The experimentally based expansion coefficients, representing the reactivity change due to uniform axial and radial expansion, are deduced by appropriately integrating measured worth profiles. This technique was evaluated in Phase A of the Zero Power Plutonium Reactor Assembly 5. Direct calculations of the expansion coefficients were performed, and results were compared with the experimentally determined values. The validity of the technique used to derive expansion coefficients from worth measurements was evaluated. It is concluded that the total expansion coefficients are reasonably well calculated; however, the calculated radial expansion coefficient was overestimated. Sources of possible systematic errors in the experimentally based values were studied. Based on the present experiment, an uncertainty of ±20% (90% level of confidence) on expansion calculations using ENDF/B-III data is estimated for a clean core configuration.