ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
WEST claims latest plasma confinement record
The French magnetic confinement fusion tokamak known as WEST maintained a plasma in February for more than 22 minutes—1,337 seconds, to be precise—and “smashed” the previous record plasma duration for a tokamak with a 25 percent improvement, according to the CEA, which operates the machine. The previous 1,006-second record was set by China’s EAST just a few weeks prior. Records are made to be broken, but this rapid progress illustrates a collective, global increase in plasma confinement expertise, aided by tungsten in key components.
B. Wei-Teh Lee, R. E. Kaiser, J. T. Hitchcock, C. S. Russell
Nuclear Science and Engineering | Volume 65 | Number 3 | March 1978 | Pages 429-440
Technical Paper | doi.org/10.13182/NSE78-A27174
Articles are hosted by Taylor and Francis Online.
An indirect experimental technique for determining the expansion coefficient was developed to provide uncertainty estimates for expansion coefficient calculations. This technique uses an R, Z reactivity worth map synthesized from small-sample reactivity traverse measurements for major materials over the reactor core and blanket regions. The experimentally based expansion coefficients, representing the reactivity change due to uniform axial and radial expansion, are deduced by appropriately integrating measured worth profiles. This technique was evaluated in Phase A of the Zero Power Plutonium Reactor Assembly 5. Direct calculations of the expansion coefficients were performed, and results were compared with the experimentally determined values. The validity of the technique used to derive expansion coefficients from worth measurements was evaluated. It is concluded that the total expansion coefficients are reasonably well calculated; however, the calculated radial expansion coefficient was overestimated. Sources of possible systematic errors in the experimentally based values were studied. Based on the present experiment, an uncertainty of ±20% (90% level of confidence) on expansion calculations using ENDF/B-III data is estimated for a clean core configuration.