ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
WEST claims latest plasma confinement record
The French magnetic confinement fusion tokamak known as WEST maintained a plasma in February for more than 22 minutes—1,337 seconds, to be precise—and “smashed” the previous record plasma duration for a tokamak with a 25 percent improvement, according to the CEA, which operates the machine. The previous 1,006-second record was set by China’s EAST just a few weeks prior. Records are made to be broken, but this rapid progress illustrates a collective, global increase in plasma confinement expertise, aided by tungsten in key components.
Katsuhei Kobayashi, Yoshiaki Fujita, Tohru Oosaki, Robert C. Block
Nuclear Science and Engineering | Volume 65 | Number 2 | February 1978 | Pages 347-353
Technical Paper | doi.org/10.13182/NSE78-A27162
Articles are hosted by Taylor and Francis Online.
The neutron average total cross section of thorium has been measured near 24 keV in an accurate transmission experiment using the time-of-flight method and the iron-filtered-beam technique. The measured average total cross section is 14.933 ± 0.041 b. The computer codes BABEL and MCROSS were used to stochastically calculate average cross sections near 24 keV from several sets of resonance parameters. The average total cross section calculated from the Forman et al. data set is in good agreement with the experimental results, but the cross section calculated from the ENDF/B-IV data set is 16% lower than the measured value. The major part of this 16% discrepancy is attributed to too small a nuclear scattering radius in the ENDF/B-IV data set.