ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Biden executive order to facilitate AI data center power
As demand for artificial intelligence and data centers grows, President Biden issued an executive order yesterday aimed to ensure clean-energy power supply for the technology.
Roberto Orsi
Nuclear Science and Engineering | Volume 157 | Number 1 | September 2007 | Pages 110-116
Computer Code Abstract | doi.org/10.13182/NSE07-A2716
Articles are hosted by Taylor and Francis Online.
This paper aims to stimulate research and to focus the attention of deterministic radiation transport code developers and users on further methodologies in transport analysis that some recent additions to the code package BOT3P potentially make possible in structured Cartesian or cylindrical mesh grids simulating complex geometries. In particular, BOT3P Version 5.0 can compute the possible area/volume error of material zones due to the stair-cased geometrical representation and automatically correct material densities in order to conserve masses, as described in a previous BOT3P paper published in Volume 154, Number 2 of Nuclear Science and Engineering to which the present one is logically and strictly related. When calculating areas and volumes refinements or when reducing the problem sizes of a voxelized geometry, typical of medical applications, BOT3P generates binary files that store also a fine submesh grid for each coarse cell at material interfaces. These files were originally conceived only for density correction computation and plotting purposes. However, the availability of such cell data intuitively suggests multistep transport analysis approaches that may combine detailed solutions at material interfaces with acceptable problem sizes and computational times. Reaching this appealing target could let deterministic codes based on structured mesh grid successfully deal with any challenging geometry problem. That might be particularly useful in medical and reactor applications.