ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
Shifting the paradigm of supply chain
Chad Wolf
When I began my nuclear career, I was coached up in the nuclear energy culture of the day to “run silent, run deep,” a mindset rooted in the U.S. Navy’s submarine philosophy. That was the norm—until Fukushima.
The nuclear renaissance that many had envisioned hit a wall. The focus shifted from expansion to survival. Many utility communications efforts pivoted from silence to broadcast, showcasing nuclear energy’s elegance and reliability. Nevertheless, despite being clean baseload 24/7 power that delivered a 90 percent capacity factor or higher, nuclear energy was painted as risky and expensive (alongside energy policies and incentives that favored renewables).
Economics became a driving force threatening to shutter nuclear power. The Delivering the Nuclear Promise initiative launched in 2015 challenged the industry to sustain high performance yet cut costs by up to 30 percent.
Edward W. Larsen, Michael Williams
Nuclear Science and Engineering | Volume 65 | Number 2 | February 1978 | Pages 290-302
Technical Paper | doi.org/10.13182/NSE78-A27158
Articles are hosted by Taylor and Francis Online.
We show that in a medium consisting of asymmetric cells, neutrons can “drift,” or diffuse, in a special preferred direction. The drift is caused by selective asymmetric changes in the cross sections in each cell. We describe several physical mechanisms that produce a drift, and we briefly discuss a possible application in a reflector design. (A reflector constructed of asymmetric cells, oriented so that the drift is always directed toward the reactor core, would be more efficient than a homogeneous driftless reflector.) Our theoretical treatment consists of an asymptotic analysis of the one-dimensional neutron transport equation. We show that a simple modification of the diffusion equation describes the neutron drift, and we provide numerical results for several problems. We also numerically compare the solution of an initial value problem for the transport equation in an asymmetric cellular medium to the corresponding diffusion theory problem. The results are in reasonably good agreement for both short and long times.