ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
WEST claims latest plasma confinement record
The French magnetic confinement fusion tokamak known as WEST maintained a plasma in February for more than 22 minutes—1,337 seconds, to be precise—and “smashed” the previous record plasma duration for a tokamak with a 25 percent improvement, according to the CEA, which operates the machine. The previous 1,006-second record was set by China’s EAST just a few weeks prior. Records are made to be broken, but this rapid progress illustrates a collective, global increase in plasma confinement expertise, aided by tungsten in key components.
W. G. Winn, P. B. Parks, N. P. Baumann, C. E. Jewell
Nuclear Science and Engineering | Volume 65 | Number 2 | February 1978 | Pages 254-272
Technical Paper | doi.org/10.13182/NSE78-A27155
Articles are hosted by Taylor and Francis Online.
Unsymmetric perturbations were introduced into the core of a large, critical, heavy-water-moderated, multiregional reactor. The resulting three-dimensional changes in flux level and shape with time were measured. Perturbations included: 1. Free-fall insertion of rods near the reactor center. Each rod contained 235U slugs in the bottom half and lithium slugs in the top half 2. Free-fall insertion of rods into an off-center radial position. Each rod contained 235U slugs in the bottom half and aluminum in the top half. 3. Withdrawal of cadmium control rods from the central 20% of the reactor core. Flux tilts calculated with the TRIMHX code were within 5% of measured flux tilts. TRIMHX provides a three-dimensional (hex-z geometry) solution of the few-group neutron diffusion and delayed precursor equations without feedback. Inputs to the calculations are available in sufficient detail to allow other methods of solution to be tested.