ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
P. Michelato, E. Cavaliere, C. Pagani, E. Bari, A. Bonucci
Nuclear Science and Engineering | Volume 157 | Number 1 | September 2007 | Pages 95-109
Technical Paper | doi.org/10.13182/NSE07-A2715
Articles are hosted by Taylor and Francis Online.
In recent years the research on nuclear power generation focused on an innovative subcritical reactor concept, along with previous liquid-metal-cooled critical reactors. The accelerator-driven system reactor design matches higher and intrinsic safety requirements with the reduction of actinides and long-lived fission products, encumbrances on the nuclear waste final repository. The coupling of the accelerator technology with the reactor facility faces new challenges; the first is the design of the interface between accelerator and reactor. Currently two solutions are proposed and investigated: one with a solid beam-target window interface and the other one without a beam window. Our speculations focus on the windowless approach: No physical barrier is located in the interface region, so the ultrahigh vacuum environment of the accelerator is connected with the operative conditions of the reactor through an intermediate spallation target. In this work we describe our experimental activities and the numerical tool employed to give a basic characterization of the vacuum dynamics for a windowless interface, with particular regard given to proton beamline and target interface of the Ansaldo A80-XADS reference design.