ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
WEST claims latest plasma confinement record
The French magnetic confinement fusion tokamak known as WEST maintained a plasma in February for more than 22 minutes—1,337 seconds, to be precise—and “smashed” the previous record plasma duration for a tokamak with a 25 percent improvement, according to the CEA, which operates the machine. The previous 1,006-second record was set by China’s EAST just a few weeks prior. Records are made to be broken, but this rapid progress illustrates a collective, global increase in plasma confinement expertise, aided by tungsten in key components.
Jungchung Jung
Nuclear Science and Engineering | Volume 65 | Number 1 | January 1978 | Pages 130-140
Technical Paper | doi.org/10.13182/NSE78-A27131
Articles are hosted by Taylor and Francis Online.
The neutron transport equation in toroidal geometry is numerically solved by making use of the discrete-ordinates SN method. The computer program developed for this computation is capable of treating a multigroup problem with anisotropic scattering. Numerical examples are given for the first wall and blanket system of a conceptual tokamak reactor design that has an aspect ratio of ∼3. To validate the present method, several numerical comparisons have been made with Monte Carlo results as well as with ANISN calculations in the case of an infinite major radius. The toroidal geometry calculation, with a uniform neutron source distribution throughout the plasma region, yields a neutron flux that, at the first wall, is maximum near the top and bottom of the torus. As one moves radially outward from the first wall, the position of the maximum flux rapidly shifts to the outermost point of each poloidal circle, and the flux decreases monotonically along the poloidal circumference until it reaches a minimum at the innermost point of the torus. At ∼10 cm from the first wall, for example, the variation becomes >20%. The one-dimensional infinite cylinder calculation shows an overestimate of flux within the first 1 cm of the first wall compared to the present calculation. In the rest of the first wall and blanket system, the one-dimensional model underestimates the fluxes in the outer region of the torus and overestimates the fluxes in the inner region.