High-resolution total neutron cross-section measurements in natural vanadium. manganese, and cobalt were made in the energy range up to a few hundred keV with the Columbia University Nevis neutron velocity spectrometer using a 200-m flight path and a nominal resolution of 0.5 ns/m. These cross-section data were analyzed with an R-matrix multilevel code, and the resonance parameters (Eλ, Γπ. S0, ⟨D⟩) were obtained. In addition, making use of the published thermal energy data, the parameters of the bound levels were determined. From these measurements the values of S0 up to 215-keV neutron energy for vanadium [ = 8.62 ± 2.45, = 8.79 ± 2.50, and = 8.7 ± 1.81; up to 200 keV for manganese [ = 3.10 ± 0.70, = 4.75 ± 1.10, and = 3.93 ± 0.651, and up to 80 keV for cobalt [ = 4.02 ± 0.96, = 2.94 ± 0.75. and = 3.48 ± 0.65 in units of 10−4 eV−1/2] have been obtained. The corresponding mean level spacings up to 215 keV for vanadium are = 8.7 ± 1.25 keV and = 8.33 ± 1.25 keV, up to 100 keV for manganese are = 3.85 ± 0.55 keV and = 4.00 ± 0.59 keV, and up to 80 keV for cobalt are = 2.29 ± 0.28 keV and = 2.67 ± 0.36 keV. The value of spin cut-off factor a is found to vary from 2.7 to 4 for these nuclei. These results do not show any J dependence on the strength function.