ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Three nations, three ways to recycle plastic waste with nuclear technology
Plastic waste pollutes oceans, streams, and bloodstreams. Nations in Asia and the Pacific are working with the International Atomic Energy Agency through the Nuclear Technology for Controlling Plastic Pollution (NUTEC Plastics) initiative to tackle the problem. Launched in 2020, NUTEC Plastics is focused on using nuclear technology to both track the flow of microplastics and improve upstream plastic recycling before discarded plastic can enter the ecosystem. Irradiation could target hard-to-recycle plastics and the development of bio-based plastics, offering sustainable alternatives to conventional plastic products and building a “circular economy” for plastics, according to the IAEA.
S. R. Bierman, B. M. Durst, E. D. Clayton
Nuclear Science and Engineering | Volume 65 | Number 1 | January 1978 | Pages 41-48
Technical Paper | doi.org/10.13182/NSE78-A27124
Articles are hosted by Taylor and Francis Online.
There is a continuing interest in the use of fixed neutron absorbers (poisons) for criticality control, since their use would permit safely handling larger quantities of nuclear materials with reduced probability of criticality. The effectiveness of such absorbers as neutron poisons depends on self-shielding effects, which in turn are determined by the magnitude of the absorption cross sections and their variation with energy, the thickness of material, and the neutron energy spectrum. Criticality experiments were performed to obtain data on the reactivity worths of several thicknesses of the following materials in two different neutron energy spectra: Boral Cadmium Type 304-L stainless steel containing 1.6 wt% boron Type 304-L stainless steel containing 1.1 wt% boron Type 304-L stainless steel Uranium depleted to 0.2 wt% 235U Lead. The measurement data reported are limited to a single region of a given absorber material in each critical assembly. Combinations of absorber materials or multiregions were not investigated; however, material thicknesses were varied from 0 to ∼60 mm. The data are presented as sets of clean, well-defined, poisoned critical assemblies that can be used to check calculational techniques and cross-section data in two different neutron energy spectra. The materials are listed above in the order of their measured relative worth as fixed poisons in either neutron energy spectrum.