ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Biden executive order to facilitate AI data center power
As demand for artificial intelligence and data centers grows, President Biden issued an executive order yesterday aimed to ensure clean-energy power supply for the technology.
Brian R. Nease, Taro Ueki
Nuclear Science and Engineering | Volume 157 | Number 1 | September 2007 | Pages 51-64
Technical Paper | doi.org/10.13182/NSE07-A2712
Articles are hosted by Taylor and Francis Online.
A coarse-mesh projection method has been developed for the Monte Carlo calculation of dominant eigenvalue ratio [dominance ratio (DR)]. The first step of the method consists of the regression analysis of the multivariate time series from the coarse-mesh binning of the Monte Carlo fission source distribution. The second step is computation of the eigenvectors of the adjoint matrix of noise propagation. In general, projections on these eigenvectors can be utilized to compute important characteristics of the eigenmodes of fission source distribution. In this work, it has been proven that if the eigenvector corresponding to the largest eigenvalue of the aforementioned adjoint matrix is taken to be the vector for projection, the projected scalar time series follows the autoregressive process of order one with the root of characteristic polynomial, i.e., the autocorrelation coefficient, being the DR of fission source distribution. Numerical results are presented for four problems including one-energy-group checkerboard-type problems, a one-energy-group cube problem and a continuous-energy pressurized water reactor core problem. The strength of the method is twofold; (a) the elimination of the use of autoregressive moving average fitting, and (b) no need to optimize the order of fitting.