ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
B. Rocca-Volmerange
Nuclear Science and Engineering | Volume 64 | Number 3 | November 1977 | Pages 779-784
Technical Note | doi.org/10.13182/NSE77-A27107
Articles are hosted by Taylor and Francis Online.
This Note expands on a previously communicated synthetic slowing down model to determine the neutron spectra in fast reactors. Based on a polynomial approximation, the model accuracy increases with the order of the expansion. It is, in fact, a generalization to N terms of the one-term classical slowing down models such as those of Fermi, Wigner, and Greuling-Goertzel. Equivalent to the classical and synthetic expression of our QN model, this Note proposes a determination of a “differential” expression of the model, allowing the calculation of a set of functions approximating the kernel Σs(u′ → u). To be used in reactor codes, the spectrum determination has to he associated to a spatial resolution; the second part of this Note is devoted to the adaptation of the QN method to the collision probability approximation or the calculation of a spatial Green's function, to obtain a flux (r,E). The applications in the isotropic collision approximation can be extended to the linearly anisotropic approximation, and various results that demonstrate the validity of the method are given.