ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40: The wait is over
Following the enthusiastic response from the nuclear community in 2024 for the inaugural NN 40 Under 40, the Nuclear News team knew we had to take up the difficult task in 2025 of turning it into an annual event—though there was plenty of uncertainty as to how the community would receive a second iteration this year. That uncertainty was unfounded, clearly, as the tight-knit nuclear community embraced the chance to celebrate its up-and-coming generation of scientists, engineers, and policy makers who are working to grow the influence of this oft-misunderstood technology.
J. R. Hofmann, C. C. Meek
Nuclear Science and Engineering | Volume 64 | Number 3 | November 1977 | Pages 713-723
Technical Paper | doi.org/10.13182/NSE77-A27100
Articles are hosted by Taylor and Francis Online.
A model employing Darcy's law has been developed to describe the transient pressure field within interconnected porosity of mixed-oxide liquid-metal fast breeder reactor fuel during hypothetical reactor accidents. Pressure increases are due both to fission gas released from fuel grains and fill gas originally present within fuel pores. Calculations utilizing the model have been performed for an out-of-pile test prior to fuel melting with both clad and unclad conditions being treated. Redistribution of gas from the source region in the relatively high-porosity unrestructured fuel to a low-porosity restructured fuel was shown to exist in all cases considered. Even for the unclad case, significant internal pressurization was predicted by the model, which could prove important in subsequent fuel breakp and motion.