ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Three nations, three ways to recycle plastic waste with nuclear technology
Plastic waste pollutes oceans, streams, and bloodstreams. Nations in Asia and the Pacific are working with the International Atomic Energy Agency through the Nuclear Technology for Controlling Plastic Pollution (NUTEC Plastics) initiative to tackle the problem. Launched in 2020, NUTEC Plastics is focused on using nuclear technology to both track the flow of microplastics and improve upstream plastic recycling before discarded plastic can enter the ecosystem. Irradiation could target hard-to-recycle plastics and the development of bio-based plastics, offering sustainable alternatives to conventional plastic products and building a “circular economy” for plastics, according to the IAEA.
M. C. Chuang, M. D. Carelli, C. W. Bach, J. S. Killimayer
Nuclear Science and Engineering | Volume 64 | Number 1 | September 1977 | Pages 244-257
Technical Paper | doi.org/10.13182/NSE77-A27095
Articles are hosted by Taylor and Francis Online.
A study is presented to determine the detailed coolant velocity and temperature profile around the entire rod circumference in liquid-metal fast breeder reactor (LMFBR) core assemblies as well as the detailed radial and circumferential temperature profile in the rod. The digital computer code FATHM-360 developed to perform the above calculations is described. Fuel, radial blanket, and control assembly rods (both wire-wrapped and bare) can be analyzed. Coolant, cladding, and fuel (or absorber) temperature profiles are calculated for uniform and nonuniform heat generation (i.e., accounting for power skew across the pellet) in the rod. Temperature distributions can be calculated for both concentric and eccentric positions of the pellet with respect to the fuel rod cladding. Typical examples of the calculational capabilities of the code are presented. Such capabilities are needed for a reliable design of LMFBR core assemblies and rods to provide detailed cladding temperature profiles and accurately calculate the cladding strain on which the fuel rod lifetime and allowable burnup depend. Overall, a more realistic core thermofluids design is possible by implementing the study presented here.