A study is presented to determine the detailed coolant velocity and temperature profile around the entire rod circumference in liquid-metal fast breeder reactor (LMFBR) core assemblies as well as the detailed radial and circumferential temperature profile in the rod. The digital computer code FATHM-360 developed to perform the above calculations is described. Fuel, radial blanket, and control assembly rods (both wire-wrapped and bare) can be analyzed. Coolant, cladding, and fuel (or absorber) temperature profiles are calculated for uniform and nonuniform heat generation (i.e., accounting for power skew across the pellet) in the rod. Temperature distributions can be calculated for both concentric and eccentric positions of the pellet with respect to the fuel rod cladding. Typical examples of the calculational capabilities of the code are presented. Such capabilities are needed for a reliable design of LMFBR core assemblies and rods to provide detailed cladding temperature profiles and accurately calculate the cladding strain on which the fuel rod lifetime and allowable burnup depend. Overall, a more realistic core thermofluids design is possible by implementing the study presented here.