ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
M. C. Chuang, M. D. Carelli, C. W. Bach, J. S. Killimayer
Nuclear Science and Engineering | Volume 64 | Number 1 | September 1977 | Pages 244-257
Technical Paper | doi.org/10.13182/NSE77-A27095
Articles are hosted by Taylor and Francis Online.
A study is presented to determine the detailed coolant velocity and temperature profile around the entire rod circumference in liquid-metal fast breeder reactor (LMFBR) core assemblies as well as the detailed radial and circumferential temperature profile in the rod. The digital computer code FATHM-360 developed to perform the above calculations is described. Fuel, radial blanket, and control assembly rods (both wire-wrapped and bare) can be analyzed. Coolant, cladding, and fuel (or absorber) temperature profiles are calculated for uniform and nonuniform heat generation (i.e., accounting for power skew across the pellet) in the rod. Temperature distributions can be calculated for both concentric and eccentric positions of the pellet with respect to the fuel rod cladding. Typical examples of the calculational capabilities of the code are presented. Such capabilities are needed for a reliable design of LMFBR core assemblies and rods to provide detailed cladding temperature profiles and accurately calculate the cladding strain on which the fuel rod lifetime and allowable burnup depend. Overall, a more realistic core thermofluids design is possible by implementing the study presented here.