ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
WEST claims latest plasma confinement record
The French magnetic confinement fusion tokamak known as WEST maintained a plasma in February for more than 22 minutes—1,337 seconds, to be precise—and “smashed” the previous record plasma duration for a tokamak with a 25 percent improvement, according to the CEA, which operates the machine. The previous 1,006-second record was set by China’s EAST just a few weeks prior. Records are made to be broken, but this rapid progress illustrates a collective, global increase in plasma confinement expertise, aided by tungsten in key components.
William C. Horak, J. J. Dorning
Nuclear Science and Engineering | Volume 64 | Number 1 | September 1977 | Pages 192-207
Technical Paper | doi.org/10.13182/NSE77-A27090
Articles are hosted by Taylor and Francis Online.
A new coarse-mesh computational method for the numerical solution of heat conduction and fluid flow problems is formally developed and applied to sample problems. The method is based upon formal use of Green's functions, which are defined locally over subdomains of the original system under consideration. The formal development of the local Green's function method for the solution of heat conduction problems is presented and discussed. Numerical solutions of sample problems for one-dimensional heat conduction with constant thermal conductivity, one-dimensional heat conduction with temperature-dependent thermal conductivity, and two-dimensional heat conduction with constant thermal conductivity are given, and these results are compared with results obtained using the finite difference and finite element methods. The formal development of the local Green's function method for the solution of fluid flow problems is then also presented and discussed; the numerical solution of a sample problem for simple one-dimensional incompressible fluid flow with viscous heating is also given.