ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
R. L. McCrory, R. L. Morse, K. A. Taggart
Nuclear Science and Engineering | Volume 64 | Number 1 | September 1977 | Pages 163-176
Technical Paper | doi.org/10.13182/NSE77-A27087
Articles are hosted by Taylor and Francis Online.
The inertial confinement approach to controlled fusion requires that small thin-walled spherical shells of fuel and other materials be imploded, compressed, and heated by laser or charged particle beams. In most cases of interest, the implosion of such thin shells is unstable to the growth of spherical asymmetries. We have developed and used two numerical simulation techniques to study these instabilities. The first technique is used to study the small amplitude growth of the instabilities by employing a perturbation method. The derivation of the Hamiltonian model on which the technique is based is developed here. The second technique is a fully nonlinear two-dimensional hydrodynamics and heat flow technique that we have used to follow the large-amplitude development and saturation of the instabilities. The examples of calculations shown demonstrate the utility of the method and the range of different saturation phenomena that may be expected.