ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
R. England, J. P. Hennart, J. G. Martin, L. Melendez L., S. M. Waller
Nuclear Science and Engineering | Volume 64 | Number 1 | September 1977 | Pages 132-140
Technical Paper | doi.org/10.13182/NSE77-A27084
Articles are hosted by Taylor and Francis Online.
Fluid equations for a low-beta plasma, where the ratio of the kinetic to the magnetic pressure is small, constitute a system of parabolic partial-differential equations. Depending on the particular assumptions made, this may be a system of three equations for density, electron temperature, and ion temperature, or a single density equation, or a system of four equations where the current density or magnetic field also has to be determined. Such equations were previously solved by one-dimensional models, imposing some additional form of symmetry. In two dimensions, strongly anisotropic diffusion coefficients cause a spurious numerical loss of plasma. This problem was tackled in various geometries for the single density equation, and adequate mass conservation methods were developed. The two principal components of the diffusion were separated and, by a method of fractional steps, were treated by distinct methods. The diffusion parallel to the magnetic field was treated as a one-dimensional problem by two different techniques, (a) using a nonstandard Galerkin finite element, and (b) resulting from an averaging process across a flux tube. Meanwhile, the perpendicular diffusion, when treated by a Galerkin finite element method, gives rise to very wide band matrices, a problem that can be resolved advantageously by using the alternating direction implicit method.