ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
R. England, J. P. Hennart, J. G. Martin, L. Melendez L., S. M. Waller
Nuclear Science and Engineering | Volume 64 | Number 1 | September 1977 | Pages 132-140
Technical Paper | doi.org/10.13182/NSE77-A27084
Articles are hosted by Taylor and Francis Online.
Fluid equations for a low-beta plasma, where the ratio of the kinetic to the magnetic pressure is small, constitute a system of parabolic partial-differential equations. Depending on the particular assumptions made, this may be a system of three equations for density, electron temperature, and ion temperature, or a single density equation, or a system of four equations where the current density or magnetic field also has to be determined. Such equations were previously solved by one-dimensional models, imposing some additional form of symmetry. In two dimensions, strongly anisotropic diffusion coefficients cause a spurious numerical loss of plasma. This problem was tackled in various geometries for the single density equation, and adequate mass conservation methods were developed. The two principal components of the diffusion were separated and, by a method of fractional steps, were treated by distinct methods. The diffusion parallel to the magnetic field was treated as a one-dimensional problem by two different techniques, (a) using a nonstandard Galerkin finite element, and (b) resulting from an averaging process across a flux tube. Meanwhile, the perpendicular diffusion, when treated by a Galerkin finite element method, gives rise to very wide band matrices, a problem that can be resolved advantageously by using the alternating direction implicit method.