ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
R. England, J. P. Hennart, J. G. Martin, L. Melendez L., S. M. Waller
Nuclear Science and Engineering | Volume 64 | Number 1 | September 1977 | Pages 132-140
Technical Paper | doi.org/10.13182/NSE77-A27084
Articles are hosted by Taylor and Francis Online.
Fluid equations for a low-beta plasma, where the ratio of the kinetic to the magnetic pressure is small, constitute a system of parabolic partial-differential equations. Depending on the particular assumptions made, this may be a system of three equations for density, electron temperature, and ion temperature, or a single density equation, or a system of four equations where the current density or magnetic field also has to be determined. Such equations were previously solved by one-dimensional models, imposing some additional form of symmetry. In two dimensions, strongly anisotropic diffusion coefficients cause a spurious numerical loss of plasma. This problem was tackled in various geometries for the single density equation, and adequate mass conservation methods were developed. The two principal components of the diffusion were separated and, by a method of fractional steps, were treated by distinct methods. The diffusion parallel to the magnetic field was treated as a one-dimensional problem by two different techniques, (a) using a nonstandard Galerkin finite element, and (b) resulting from an averaging process across a flux tube. Meanwhile, the perpendicular diffusion, when treated by a Galerkin finite element method, gives rise to very wide band matrices, a problem that can be resolved advantageously by using the alternating direction implicit method.