ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
WEST claims latest plasma confinement record
The French magnetic confinement fusion tokamak known as WEST maintained a plasma in February for more than 22 minutes—1,337 seconds, to be precise—and “smashed” the previous record plasma duration for a tokamak with a 25 percent improvement, according to the CEA, which operates the machine. The previous 1,006-second record was set by China’s EAST just a few weeks prior. Records are made to be broken, but this rapid progress illustrates a collective, global increase in plasma confinement expertise, aided by tungsten in key components.
Zbigniew Weiss
Nuclear Science and Engineering | Volume 63 | Number 4 | August 1977 | Pages 457-492
Technical Paper | doi.org/10.13182/NSE77-A27062
Articles are hosted by Taylor and Francis Online.
The response matrix equations (RME) are analyzed from two points of view: (a) their computational feasibility, and (b) their consistency with other methods used in reactor analysis. It is shown that RME can be derived directly from the weak form of the diffusion equation without the concept of partial currents, and hence, are also applicable to the description of phenomena, where partial currents have no physical meaning (for example, the conduction of heat). By splitting the high-order RME into a coupled system of single-order equations, the analysis of the convergence properties of the iterative solutions to RME could be greatly simplified. The derived explicit expressions for the convergence ratio were verified by numerical experimentation. As an illustration, the well-known International Atomic Energy Agency benchmark problem has been calculated by two two-dimensional response matrix programs at ASEA-ATOM, CIKADA, and LABAN. In the second part of the paper, the relation of RME to finite difference (FD) equations has been investigated. It was shown that for small mesh sizes, RME are computationally not feasible. For rectangular nodes, an algorithm called the “vectorial model” (VM) was developed, which reduces the amount of unknowns in RME by a factor of 2. This is a generalization to two- and three-dimensional nodes of the author's earlier results. An approximate reduction of VM to scalar equations (one unknown per node) has been discussed, and its relation to recent developments in nodal methods has been emphasized. Several ideas in this paper, such as the improved FD scheme, are far from being completed and therefore should be challenging for further investigation.