ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
S. Langenbuch, W. Maurer, W. Werner
Nuclear Science and Engineering | Volume 63 | Number 4 | August 1977 | Pages 437-456
Technical Paper | doi.org/10.13182/NSE77-A27061
Articles are hosted by Taylor and Francis Online.
A coarse-mesh method for the solution of multidimensional neutron kinetics problems is presented that is based on the approximation of the desired solution by basis functions with local nonoverlapping supports corresponding to the volume elements of the spatial mesh. Integration of the approximating functions over their supports, and exploitation of continuity conditions for neutron flux and current, yields local seven-point difference operators with solution-dependent coupling coefficients. Due to the finite-difference (FD) structure of the resulting matrix equation, any technique developed for FD methods can be used for its solution. However, a novel (“almost implicit”) alternating direction explicit-implicit technique has been developed that is especially suited for coarse-mesh applications. Numerical examples that demonstrate the high efficiency of the method are presented. By using a spatial grid corresponding to the fuel element structure, it is possible to compute power distribution and its time history very accurately (at most, with a several percent error) at an economically tolerable expense.