ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
S. Langenbuch, W. Maurer, W. Werner
Nuclear Science and Engineering | Volume 63 | Number 4 | August 1977 | Pages 437-456
Technical Paper | doi.org/10.13182/NSE77-A27061
Articles are hosted by Taylor and Francis Online.
A coarse-mesh method for the solution of multidimensional neutron kinetics problems is presented that is based on the approximation of the desired solution by basis functions with local nonoverlapping supports corresponding to the volume elements of the spatial mesh. Integration of the approximating functions over their supports, and exploitation of continuity conditions for neutron flux and current, yields local seven-point difference operators with solution-dependent coupling coefficients. Due to the finite-difference (FD) structure of the resulting matrix equation, any technique developed for FD methods can be used for its solution. However, a novel (“almost implicit”) alternating direction explicit-implicit technique has been developed that is especially suited for coarse-mesh applications. Numerical examples that demonstrate the high efficiency of the method are presented. By using a spatial grid corresponding to the fuel element structure, it is possible to compute power distribution and its time history very accurately (at most, with a several percent error) at an economically tolerable expense.