ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
WEST claims latest plasma confinement record
The French magnetic confinement fusion tokamak known as WEST maintained a plasma in February for more than 22 minutes—1,337 seconds, to be precise—and “smashed” the previous record plasma duration for a tokamak with a 25 percent improvement, according to the CEA, which operates the machine. The previous 1,006-second record was set by China’s EAST just a few weeks prior. Records are made to be broken, but this rapid progress illustrates a collective, global increase in plasma confinement expertise, aided by tungsten in key components.
W. E. Kinney, F. G. Perey
Nuclear Science and Engineering | Volume 63 | Number 4 | August 1977 | Pages 418-429
Technical Paper | doi.org/10.13182/NSE77-A27059
Articles are hosted by Taylor and Francis Online.
High-resolution gamma-ray production cross sections for the 846-keV gamma ray of iron have been measured up to an incident neutron energy of 2100 keV. The measurements were performed using the Oak Ridge Electron Linear Accelerator as the neutron source, and they were obtained by a ratio measurement to the 7Li 477-keV gamma-ray cross sections. Three NE-213 detectors were used at 30, 90, and 125 deg to derive the total inelastic cross sections and the angular distributions. The 1250 angular distributions measured with ∼0.1 ns/m resolution show considerable fluctuations as a function of energy over the resonances seen in the inelastic cross sections. The results are compared to the ENDF/B-IV evaluation, high-resolution data at 125 deg and, after suitable averaging, with recent monoenergetic neutron source data that average over the structure experimentally. The general consistency of the data with recent measurements, using different techniques and normalization procedures, indicates that our knowledge of this important cross section for fission reactor applications may now be known to an accuracy better than 10%. This is a significant achievement in view of the wide scatter of earlier data on such a fluctuating cross section.