ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
H. Alan Robitaille, John S. Hewitt
Nuclear Science and Engineering | Volume 63 | Number 4 | August 1977 | Pages 391-400
Technical Paper | doi.org/10.13182/NSE77-A27056
Articles are hosted by Taylor and Francis Online.
The spectrum of neutrons in thermal pseudo-equilibrium with a mixture of partially hydrogenated terphenyls and high-boiling polymers, an organic material known commercially as HB40, has been measured at room temperature. The spectrum was measured in each of seven mixtures of HB40 and a thermal-neutron absorber, trimethyl borate, in various concentrations. The spectra were determined by the time-of-flight method using the University of Toronto linear electron accelerator as a pulsed source of fast neutrons. These spectra were compared with those calculated using several different bound-hydrogen approximations to the actual energy transfer kernel for the mixture. Of these approximations, the best agreement between theory and experiment occurred for a scattering kernel derived using the diphenyl and the polyethylene scattering kernels, combined according to a weighting scheme reflecting the degree of hydrogenation of the organic material.