ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Tadashi Yoshida
Nuclear Science and Engineering | Volume 63 | Number 4 | August 1977 | Pages 376-390
Technical Paper | doi.org/10.13182/NSE77-A27055
Articles are hosted by Taylor and Francis Online.
The gross theory of beta decay developed by Takahashi and Yamada has been applied to an estimation of nuclear decay heat of short-lived fission products, that is, to the average energies of emitted beta particles and gamma rays and the half-lives. For short-lived fission products for which no experimental information is available, calculations have been performed with the most probable value of a parameter Q00, which represents the energy of the lowest level actually fed by the beta transition. The results have been summarized in the form of several simple formulas, which are functions of the Q value and mass number of the nuclide in question. When the half-life is determined experimentally, the certainty of the calculated results for the average released energies can be improved by means of a search for the best Q00 value based on the measured half-life for each nuclide. Evaluation of confidence bands is also performed for the calculated results.