ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Michael R. Prisco, Robert E. Henry, Michael N. Hutcherson, John L. Linehan
Nuclear Science and Engineering | Volume 63 | Number 4 | August 1977 | Pages 365-375
Technical Paper | doi.org/10.13182/NSE77-A27054
Articles are hosted by Taylor and Francis Online.
Two-phase, critical flow data are reported for initially saturated and subcooled liquid Freon-11 flowing through sharp-edged entrance tubes for length-to-diameter (L/D) ratios from 2.82 to 100. Comparisons among various analytical models and these data show that nonequilibrium models describe the critical flow phenomenon more accurately than equilibrium models. It is shown that to obtain reliable exit plane pressure measurements, it is necessary to have a gradual divergence at the exit of the constant-area tube. This minimizes the expansion of the exiting fluid, which would otherwise result in an exit pressure measurement much lower than the one-dimensional value governing the flow. Utilizing data from this study, quantitative estimates of the individual phase velocities at the condition of critical flow indicate that “vapor choking” is not the mechanism by which two-phase critical flow occurs in this investigation. The flow pattern in a transparent test section, with an L/D ratio of 2.82, has been observed and photographed, and this shows that the separated flow condition (liquid jet surrounded by vapor) begins to break up into a dispersed two-phase mixture approximately one equivalent diameter downstream of the entrance.