ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
T. Wakabayashi, Y. Hachiya
Nuclear Science and Engineering | Volume 63 | Number 3 | July 1977 | Pages 292-305
Technical Paper | doi.org/10.13182/NSE77-A27041
Articles are hosted by Taylor and Francis Online.
The thermal-neutron behavior in a highly heterogeneous cluster-type plutonium fuel lattice has been studied through the measurements of the dysprosium reaction-rate distribution in a unit cell covering three plutonium fuel elements, four coolant voids, and two lattice pitches. The study included comparison with the results obtained with UO2 fuel. A new technique for locating the foils has been developed, resulting in an accurate measurement of the thermal-neutron flux distribution. Depression of the thermal-neutron flux in the fuel region is larger in the plutonium fuel lattice than in the uranium lattice because thermal-neutron absorption in the plutonium fuel is enhanced by the resonances of 239Pu and 241Pu at 0.3 eV. In addition, the 1/v cross section of plutonium is larger than that of uranium. This property of the plutonium fuel appears markedly at 100% void fraction, but less at 0% because this property is weakened by the presence of H2O coolant. The results of calculations obtained by means of the LAMP-DCA code showed good agreement with experimentally determined data within 5%.