ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
T. Wakabayashi, Y. Hachiya
Nuclear Science and Engineering | Volume 63 | Number 3 | July 1977 | Pages 292-305
Technical Paper | doi.org/10.13182/NSE77-A27041
Articles are hosted by Taylor and Francis Online.
The thermal-neutron behavior in a highly heterogeneous cluster-type plutonium fuel lattice has been studied through the measurements of the dysprosium reaction-rate distribution in a unit cell covering three plutonium fuel elements, four coolant voids, and two lattice pitches. The study included comparison with the results obtained with UO2 fuel. A new technique for locating the foils has been developed, resulting in an accurate measurement of the thermal-neutron flux distribution. Depression of the thermal-neutron flux in the fuel region is larger in the plutonium fuel lattice than in the uranium lattice because thermal-neutron absorption in the plutonium fuel is enhanced by the resonances of 239Pu and 241Pu at 0.3 eV. In addition, the 1/v cross section of plutonium is larger than that of uranium. This property of the plutonium fuel appears markedly at 100% void fraction, but less at 0% because this property is weakened by the presence of H2O coolant. The results of calculations obtained by means of the LAMP-DCA code showed good agreement with experimentally determined data within 5%.