ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Yasunori Yamamura, Tamotsu Sekiya
Nuclear Science and Engineering | Volume 63 | Number 2 | June 1977 | Pages 213-217
Technical Note | doi.org/10.13182/NSE77-A27030
Articles are hosted by Taylor and Francis Online.
The Wigner-type continuous slowing down theory is derived from the physical point of view, considering the neutron balance in lethargy space, and is applied to the calculation of neutron spectra in fast-reactor compositions, where the moderating effect of inelastic scattering is very important. The present theory corresponds to the macroscopic representation of the moderating process of neutrons. Its single moderating parameter, (u), is defined as the ratio of slowing down density, q(u), to collision integral, B(u), i.e., This parameter has the physical meaning of “mean-free-path” in lethargy space and is numerically calculated by an iterative technique. The validity of the present formalism is tested by comparing numerical calculations of neutron spectra for some fast-reactor compositions with neutron spectra computed by Monte Carlo simulation.