ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
Jim E. Morel, James S. Warsa
Nuclear Science and Engineering | Volume 156 | Number 3 | July 2007 | Pages 325-342
Technical Paper | doi.org/10.13182/NSE06-13
Articles are hosted by Taylor and Francis Online.
We consider two general finite-element lumping techniques for the Sn equations with discontinuous finite-element spatial discretization and apply them to quadrilateral meshes in x-y geometry. One technique is designed to ensure a conservative approximation and is referred to as conservation preserving (CP). The other technique is designed to preserve the exact solution whenever it is contained within the trial space and is referred to as solution preserving (SP). These techniques are applied in x-y geometry on structured nonorthogonal grids using the bilinear-discontinuous finite-element approximation. The schemes are both theoretically analyzed and computationally tested. Analysis shows that the two lumping schemes are equivalent on parallelogram meshes. Computational results indicate that both techniques perform extremely well on smooth quadrilateral meshes. On nonsmooth meshes, the preserving technique retains its excellent performance while the CP technique degrades. The reasons for this degradation are discussed. Although the SP scheme has proven to be generally effective on quadrilateral meshes in x-y geometry, it is not expected to be effective for quadrilaterals in r-z geometry or for hexahedra in three-dimensional Cartesian geometry. Thus, a full lumping procedure for general nonorthogonal meshes that possesses all of the desired properties has yet to be found. For reasons that are discussed, it appears unlikely that such a procedure exists.