ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Illinois lifts moratorium on new large nuclear reactors
New power reactors of any size can be now be sited in the state of Illinois, thanks to legislation signed by Gov. J. B. Pritzker on January 8. The Clean and Reliable Grid Affordability Act (CRGA)—which Pritzker says is designed to lower energy costs for consumers, drive the development of new energy resources in the state, and strengthen the grid—lifts the moratorium on new, large nuclear reactors that Illinois enacted in the late 1980s.
Jim E. Morel, James S. Warsa
Nuclear Science and Engineering | Volume 156 | Number 3 | July 2007 | Pages 325-342
Technical Paper | doi.org/10.13182/NSE06-13
Articles are hosted by Taylor and Francis Online.
We consider two general finite-element lumping techniques for the Sn equations with discontinuous finite-element spatial discretization and apply them to quadrilateral meshes in x-y geometry. One technique is designed to ensure a conservative approximation and is referred to as conservation preserving (CP). The other technique is designed to preserve the exact solution whenever it is contained within the trial space and is referred to as solution preserving (SP). These techniques are applied in x-y geometry on structured nonorthogonal grids using the bilinear-discontinuous finite-element approximation. The schemes are both theoretically analyzed and computationally tested. Analysis shows that the two lumping schemes are equivalent on parallelogram meshes. Computational results indicate that both techniques perform extremely well on smooth quadrilateral meshes. On nonsmooth meshes, the preserving technique retains its excellent performance while the CP technique degrades. The reasons for this degradation are discussed. Although the SP scheme has proven to be generally effective on quadrilateral meshes in x-y geometry, it is not expected to be effective for quadrilaterals in r-z geometry or for hexahedra in three-dimensional Cartesian geometry. Thus, a full lumping procedure for general nonorthogonal meshes that possesses all of the desired properties has yet to be found. For reasons that are discussed, it appears unlikely that such a procedure exists.