ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Three nations, three ways to recycle plastic waste with nuclear technology
Plastic waste pollutes oceans, streams, and bloodstreams. Nations in Asia and the Pacific are working with the International Atomic Energy Agency through the Nuclear Technology for Controlling Plastic Pollution (NUTEC Plastics) initiative to tackle the problem. Launched in 2020, NUTEC Plastics is focused on using nuclear technology to both track the flow of microplastics and improve upstream plastic recycling before discarded plastic can enter the ecosystem. Irradiation could target hard-to-recycle plastics and the development of bio-based plastics, offering sustainable alternatives to conventional plastic products and building a “circular economy” for plastics, according to the IAEA.
S. K. Gupta
Nuclear Science and Engineering | Volume 63 | Number 2 | June 1977 | Pages 193-197
Technical Note | doi.org/10.13182/NSE77-A27024
Articles are hosted by Taylor and Francis Online.
A spectrum of gamma rays containing more than 34 lines arising from concrete walls of the laboratory has been measured with a germanium-lithium-drifted detector having 4-keV resolution for 1332-keV gamma rays. The fact that the gamma rays originate from the concrete is supported by another measurement in which a 5- × 5-cm NaI(Tl) detector was moved near and away from the wall inside a lead-shielded channel intercepting a small portion of the wall and also by a Ge(Li) spectrum taken in another room of the laboratory. The gamma rays have been assigned to 40K and to the daughter products of thorium and uranium. The measured intensities are in good agreement with the decay schemes of the relevant isotopes. Concentrations of thorium, uranium, and potassium in the walls have been obtained from the spectra, and thus it has been shown that high-resolution gamma-ray spectroscopy can be used as an in situ nondestructive method to assess the contents of thorium and uranium minerals occurring even in an ill-defined geometry. The data also explain the nature of the gamma-ray background for an unshielded detector placed in a concrete building and reveal that most of that background, up to an energy of 8 MeV, originates from the natural radioactivity in the concrete.