ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Three nations, three ways to recycle plastic waste with nuclear technology
Plastic waste pollutes oceans, streams, and bloodstreams. Nations in Asia and the Pacific are working with the International Atomic Energy Agency through the Nuclear Technology for Controlling Plastic Pollution (NUTEC Plastics) initiative to tackle the problem. Launched in 2020, NUTEC Plastics is focused on using nuclear technology to both track the flow of microplastics and improve upstream plastic recycling before discarded plastic can enter the ecosystem. Irradiation could target hard-to-recycle plastics and the development of bio-based plastics, offering sustainable alternatives to conventional plastic products and building a “circular economy” for plastics, according to the IAEA.
G. P. Sabol, S. G. McDonald
Nuclear Science and Engineering | Volume 63 | Number 1 | May 1977 | Pages 83-90
Technical Paper | doi.org/10.13182/NSE77-A27007
Articles are hosted by Taylor and Francis Online.
Alloying additions of 0.5 and 1.0 wt% niobium, respectively, have been added to Zircaloy-4 in an attempt to improve its high-temperature corrosion resistance. Ingots of these modified alloys were fabricated to a 0.76-mm-thick sheet via a processing sequence compatible with commercial tubing production and were given one of four different final anneals. Subsequent testing indicated that the niobium additions had little or no effect on corrosion resistance in 360°C water. In 427°C steam, however, the 0.5%-niobium addition provided increased resistance to spalling, while the 1.0%-niobium addition decreased both cumulative weight gains and post-transition corrosion rates. The weight gains exhibited by the 0.5%-niobium alloy were relatively insensitive to final heat treatment, whereas the 1.0%-niobium alloy suffered a degradation in properties as the extent of the final anneal increased. These trends in corrosion performance were subsequently correlated with the second-phase particle size distributions present in the alloys, the best performance being obtained when the mean particle diameter was <400 to 500 Å. It was concluded that both niobium additions improved the corrosion performance of Zircaloy-4 at elevated temperatures, but that the best performance was obtained at the 1.0-wt%-niobium level.