ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
R. A. Bajura, A. H. Mace, Jr.
Nuclear Science and Engineering | Volume 63 | Number 1 | May 1977 | Pages 63-74
Technical Paper | doi.org/10.13182/NSE77-A27005
Articles are hosted by Taylor and Francis Online.
The effects of structural vibration on the pressure and velocity fields of a two-dimensional channel flow are examined in terms of three dimensionless parameters related to the amplitude and frequency of vibration and the frictional pressure losses in the channel. Pressure-flow characteristics for the pumping system supplying fluid to the channel are varied between the extremes of the constant flow rate and constant pressure-drop modes of operation. The constant flow rate mode exhibits a larger response to the vibrating wall motion than the constant pressure-drop mode of operation. Structural motion is shown to alter both the time-averaged and dynamic pressure and velocity fields in the channel compared to the steady flow values. Pressure eddies that scale on the order of the structural dimensions arise due to the interaction of the vibrating channel wall with the mean flow field. These eddies have dimensions in between the scales of boundary layer eddies and acoustic eddies and therefore can be significant in exciting large structural vibrations in the fundamental mode through a feedback effect. The hydrodynamic mass associated with the structural vibration will be reduced due to the leakage of fluid out the ends of the channel. The effects of the wall vibration on the mean flow field should be considered for flows in narrow passages when estimating the fluid-structure inter-action forces due to the flow of a high-density fluid past a surface.