ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
R. A. Bajura, A. H. Mace, Jr.
Nuclear Science and Engineering | Volume 63 | Number 1 | May 1977 | Pages 63-74
Technical Paper | doi.org/10.13182/NSE77-A27005
Articles are hosted by Taylor and Francis Online.
The effects of structural vibration on the pressure and velocity fields of a two-dimensional channel flow are examined in terms of three dimensionless parameters related to the amplitude and frequency of vibration and the frictional pressure losses in the channel. Pressure-flow characteristics for the pumping system supplying fluid to the channel are varied between the extremes of the constant flow rate and constant pressure-drop modes of operation. The constant flow rate mode exhibits a larger response to the vibrating wall motion than the constant pressure-drop mode of operation. Structural motion is shown to alter both the time-averaged and dynamic pressure and velocity fields in the channel compared to the steady flow values. Pressure eddies that scale on the order of the structural dimensions arise due to the interaction of the vibrating channel wall with the mean flow field. These eddies have dimensions in between the scales of boundary layer eddies and acoustic eddies and therefore can be significant in exciting large structural vibrations in the fundamental mode through a feedback effect. The hydrodynamic mass associated with the structural vibration will be reduced due to the leakage of fluid out the ends of the channel. The effects of the wall vibration on the mean flow field should be considered for flows in narrow passages when estimating the fluid-structure inter-action forces due to the flow of a high-density fluid past a surface.