ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS joins others in seeking to discuss SNF/HLW impasse
The American Nuclear Society joined seven other organizations to send a letter to Energy Secretary Christopher Wright on July 8, asking to meet with him to discuss “the restoration of a highly functioning program to meet DOE’s legal responsibility to manage and dispose of the nation’s commercial and legacy defense spent nuclear fuel (SNF) and high-level radioactive waste (HLW).”
John A. Adams, R. R. Roy
Nuclear Science and Engineering | Volume 63 | Number 1 | May 1977 | Pages 41-47
Technical Paper | doi.org/10.13182/NSE77-A27002
Articles are hosted by Taylor and Francis Online.
Protons from 252Cf fission have been studied to determine their origin by using a ΔE, E detector particle telescope. Both fission- and nonfission-related events are discussed as possible sources of the observed proton energy spectrum. The increased yield of low-energy protons, which peak at ∼3.2 MeV, seems to be due mainly to background (α,p) reactions. Evidence of polar proton emission is discussed and gives an estimated polar proton emission yield of 2.83 ± 0.18 × 10−5 per fission, with a most probable energy of 10.0 ± 0.2 MeV and full-width at half-maximum (FWHM) of 7.6 ± 0.2 MeV. The yield of tripartition fission-related protons was then estimated to be 3.50 ± 0.20 × 10−5 per fission, with a most probable energy of 6.6 ± 0.2 MeV and an FWHM of 7.0 ± 0.2 MeV