ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
WEST claims latest plasma confinement record
The French magnetic confinement fusion tokamak known as WEST maintained a plasma in February for more than 22 minutes—1,337 seconds, to be precise—and “smashed” the previous record plasma duration for a tokamak with a 25 percent improvement, according to the CEA, which operates the machine. The previous 1,006-second record was set by China’s EAST just a few weeks prior. Records are made to be broken, but this rapid progress illustrates a collective, global increase in plasma confinement expertise, aided by tungsten in key components.
Makoto Ueda, Mitsuo Matsumoto, Tohru Haga
Nuclear Science and Engineering | Volume 62 | Number 3 | March 1977 | Pages 559-570
Technical Note | doi.org/10.13182/NSE77-A26992
Articles are hosted by Taylor and Francis Online.
The control rod effect has been experimentally studied in the Deuterium Critical Assembly (DCA) by using annular absorbers that simulate control rods of the FUGEN reactor, a prototype heavy-water-moderated, boiling-light-water-cooled, pressure-tube-type reactor. The DCA cores for this experiment are of the 1.2%-235U-enriched UO2 lattices, and consist of 28-pin fuel clusters arranged in a square array of 22.5-cm lattice pitch. The experiment has been carried out with various control rod patterns and with varying coolant void fraction. Experimental results were analyzed by the “absorption area method,” which was employed in the FUGEN control rod design calculations. The calculated reactivity worth agreed with the experiment within ±10%. The calculations somewhat overestimated the absorber worths in the nonvoided core and underestimated them in the voided core. This tendency was found to be greatly improved by considering the anisotropy effect in the migration area of the cluster lattice. The experimental results were also analyzed by the “logarithmic derivative method.” This method more poorly predicted the worths, but described better the flux shape around the rods.