ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Biden executive order to facilitate AI data center power
As demand for artificial intelligence and data centers grows, President Biden issued an executive order yesterday aimed to ensure clean-energy power supply for the technology.
Tejbir Singh, Paramjeet Kaur, Parjit S. Singh
Nuclear Science and Engineering | Volume 156 | Number 2 | June 2007 | Pages 229-243
Technical Paper | doi.org/10.13182/NSE07-A2699
Articles are hosted by Taylor and Francis Online.
Mass attenuation coefficient, effective atomic number, and electron density of 12 organic acids, acetic acid (C2H4O2), acrylic acid (C3H4O2), benzoic acid (C7H6O2), butyric acid (C4H8O2), citric acid (C6H8O7), formic acid (CH2O2), lactic acid (C3H6O3), malic acid (C4H6O5), oxalic acid (C2H2O4), salicylic acid (C7H6O3), tartaric acid (C4H6O6), and valeric acid (C5H10O2), were computed in the wide energy range of incident photon energies from 1 keV to 100 GeV. The variation of these parameters has been studied as a function of incident photon energy. Further, a comparative study of two different methods used to compute effective atomic number is completed.