ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
H. I. Liou, R. E. Chrien
Nuclear Science and Engineering | Volume 62 | Number 3 | March 1977 | Pages 463-478
Technical Paper | doi.org/10.13182/NSE77-A26985
Articles are hosted by Taylor and Francis Online.
Designers of thermal-neutron reactors have always had to adjust microscopic nuclear cross sections to predict neutron multiplication in slightly enriched uranium lattices. It has been surmised that the problem lies in an overestimation of the neutron capture cross section of 238U below 100 eV. We have measured these cross sections by three independent experiments. First, a series of neutron transmission and self-indication measurements were taken on samples of 238U ranging from 10.79 to 11 620 b/atom in inverse thickness. The level parameters were obtained using area analysis and multilevel fits. Next, the capture cross sections deduced from these level parameters were confirmed by direct measurements on both the continuum and discrete line portions of the low-energy gamma-ray spectra. High resolution measurements on the gamma-ray spectra were carried out from 530 to 900 keV over the neutron energy range from near thermal to ∼20 eV. Finally, a further check was made by activating thin samples of 238U with monochromatic neutrons obtained by Bragg scattering. The result is consistent with the capture cross sections obtained by the gamma-ray spectra measurement. Our results reduce, by 25%, the shielded capture integral discrepancy observed in early Bettis Atomic Power Laboratory critical experiments (TRX) with low-235U-enriched uranium rods latticed in water. When they are coupled with refined lattice calculations, much of the long-standing discrepancy is removed.