ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
ANS announces 2026 Presidential Citations
One of the privileges of being president of the American Nuclear Society is awarding Presidential Citations to individuals who have demonstrated outstanding effort in some manner for the benefit of ANS or the nuclear community at large. Citations are conferred twice each year, at the Annual and Winter Meetings.
ANS President Hash Hashemian has named this season’s recipients, who will receive recognition at the upcoming 2025 Winter Conference & Expo in Washington, D.C.
D. Shalitin, J. J. Wagschal, Y. Yeivin
Nuclear Science and Engineering | Volume 62 | Number 3 | March 1977 | Pages 364-370
Technical Paper | doi.org/10.13182/NSE77-A26978
Articles are hosted by Taylor and Francis Online.
We study the dependence of the number, N, of iterations necessary for the convergence of the one-group inhomogeneous transport equation, on the normalization, α, of an initial flux proportional to the external source distribution. It is proven that if the initial flux has the correct ψ0 component, where ψ0 is the fundamental eigenfunction of the corresponding homogeneous equation, the number of iterations is significantly reduced. This minimum is already indicated by a heuristic neutron-balance argument, whereas the complete function N(α) is derived by means of a rigorous analysis. Results of this analysis are illustrated by some numerical examples.