ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
D. Shalitin, J. J. Wagschal, Y. Yeivin
Nuclear Science and Engineering | Volume 62 | Number 3 | March 1977 | Pages 364-370
Technical Paper | doi.org/10.13182/NSE77-A26978
Articles are hosted by Taylor and Francis Online.
We study the dependence of the number, N, of iterations necessary for the convergence of the one-group inhomogeneous transport equation, on the normalization, α, of an initial flux proportional to the external source distribution. It is proven that if the initial flux has the correct ψ0 component, where ψ0 is the fundamental eigenfunction of the corresponding homogeneous equation, the number of iterations is significantly reduced. This minimum is already indicated by a heuristic neutron-balance argument, whereas the complete function N(α) is derived by means of a rigorous analysis. Results of this analysis are illustrated by some numerical examples.