ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Three nations, three ways to recycle plastic waste with nuclear technology
Plastic waste pollutes oceans, streams, and bloodstreams. Nations in Asia and the Pacific are working with the International Atomic Energy Agency through the Nuclear Technology for Controlling Plastic Pollution (NUTEC Plastics) initiative to tackle the problem. Launched in 2020, NUTEC Plastics is focused on using nuclear technology to both track the flow of microplastics and improve upstream plastic recycling before discarded plastic can enter the ecosystem. Irradiation could target hard-to-recycle plastics and the development of bio-based plastics, offering sustainable alternatives to conventional plastic products and building a “circular economy” for plastics, according to the IAEA.
W. L. Dutré, A. F. Debosscher
Nuclear Science and Engineering | Volume 62 | Number 3 | March 1977 | Pages 355-363
Technical Paper | doi.org/10.13182/NSE77-A26977
Articles are hosted by Taylor and Francis Online.
This paper presents an exact and complete statistical analysis of the neutron density fluctuations resulting from Gaussian white reactivity noise in a point reactor model with proportional power feedback, but without delayed neutrons. The analysis includes the multiplicative effect of neutron density and reactivity variations. An exact solution of the time-independent Fokker-Planck equation is found, resulting in a gamma density function for the stationary first-order probability density of the power fluctuations. The time-dependent Fokker-Planck equation is solved for the Laplace transformed function, which can be written in terms of confluent hypergeometric functions. The subsequent inversion yields the transition probability density function. The most common first- and second-order statistical characteristics, such as moments, autocovariance function, and power spectral density, are calculated and compared to the results of a linearized analysis.