ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Three nations, three ways to recycle plastic waste with nuclear technology
Plastic waste pollutes oceans, streams, and bloodstreams. Nations in Asia and the Pacific are working with the International Atomic Energy Agency through the Nuclear Technology for Controlling Plastic Pollution (NUTEC Plastics) initiative to tackle the problem. Launched in 2020, NUTEC Plastics is focused on using nuclear technology to both track the flow of microplastics and improve upstream plastic recycling before discarded plastic can enter the ecosystem. Irradiation could target hard-to-recycle plastics and the development of bio-based plastics, offering sustainable alternatives to conventional plastic products and building a “circular economy” for plastics, according to the IAEA.
William H. Miller, Walter Meyer, Darrol H. Timmons
Nuclear Science and Engineering | Volume 62 | Number 2 | February 1977 | Pages 262-269
Technical Paper | doi.org/10.13182/NSE77-A26961
Articles are hosted by Taylor and Francis Online.
Fast-neutron angular penetration spectra were experimentally determined for a fast-neutron spectrum incident on 4-, 8-, and 12-in. (102-, 203-, and 305-mm)-thick water slabs. The experimental spectra were compared with MORSE Monte Carlo calculations using readily available multigroup cross sections. The source of fast neutrons for the experimental study was the Missouri University Research Reactor; the incident and penetration neutron spectra were detected using a 2- X 2-in. (51- X 51-mm) NE-213 liquid scintillation spectrometer system. A comparison of the Monte Carlo and experimental results showed excellent agreement for all but the thickest slabs. All results showed similar trends and structure, and only for the 12-in. slab did the experimental and calculated result vary by as much as 40% for shallow angle penetrations. Integrated spectral results are generally within ±15% for all reported angles and thicknesses. A modification to the well-known MORSE code has been utilized to calculate group-to-group transfer probabilities for each of the experimental geometries. These probabilities have been converted to dose and are tabulated to permit calculation of the penetration dose for any incident neutron spectrum for the comprehensive set of angles considered in this work.