ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
WEST claims latest plasma confinement record
The French magnetic confinement fusion tokamak known as WEST maintained a plasma in February for more than 22 minutes—1,337 seconds, to be precise—and “smashed” the previous record plasma duration for a tokamak with a 25 percent improvement, according to the CEA, which operates the machine. The previous 1,006-second record was set by China’s EAST just a few weeks prior. Records are made to be broken, but this rapid progress illustrates a collective, global increase in plasma confinement expertise, aided by tungsten in key components.
Paul B. Abramson
Nuclear Science and Engineering | Volume 62 | Number 2 | February 1977 | Pages 195-214
Technical Paper | doi.org/10.13182/NSE77-A26957
Articles are hosted by Taylor and Francis Online.
Subroutine POOL was developed for the study of hypothetical core disruptive accidents in nuclear reactors and, as such, is set up for use as a subroutine in the FX-2 Dynamic Neutronics Code. This combination permits scoping studies of the total neutronic/hydrodynamic interactions and is capable of performing phenomenological investigations of hypothetical problems ranging from the high ramp disassembly calculations, performed in the past by the Lagrangian code VENUS, to the study of recriticality in boiling pools of fuel and steel. POOL specifically includes, in at least parametric fashion, the following phenomena: 1. intra- and inter-element heat transfer by diffusion, convection, and radiation for both fuel and steel inside the pool and at the boundaries 2. local vapor generation and concurrent local pressurization 3. hydrodynamic behavior using the inviscid Navier-Stokes equations in a Eulerian formulation. Sample results are shown for boil-up of an initially quiescent dense pool of fuel and steel. Subroutine POOL was modified by removing the free surface portion of the calculation and the associated expansion of the Eulerian Grid. The combined code, known as FX2-P00L, was used to perform prompt burst calculations for two comparison cases for a lOOO-MW(th) demolike reactor. Good agreement is shown between FX2-POOL and VENUS II for these two hypothetical situations, indicating that the hydrodynamic and thermodynamic assumptions made in POOL are accurate enough for prompt burst analysis and compare well with the VENUS models.