ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
IAEA report confirms safety of discharged Fukushima water
An International Atomic Energy Agency task force has confirmed that the discharge of treated water from Japan’s Fukushima Daiichi nuclear power plant is proceeding in line with international safety standards. The task force’s findings were published in the agency’s fourth report since Tokyo Electric Power Company began discharging Fukushima’s treated and diluted water in August 2023.
More information can be found on the IAEA’s Fukushima Daiichi ALPS Treated Water Discharge web page.
Paul B. Abramson
Nuclear Science and Engineering | Volume 62 | Number 2 | February 1977 | Pages 195-214
Technical Paper | doi.org/10.13182/NSE77-A26957
Articles are hosted by Taylor and Francis Online.
Subroutine POOL was developed for the study of hypothetical core disruptive accidents in nuclear reactors and, as such, is set up for use as a subroutine in the FX-2 Dynamic Neutronics Code. This combination permits scoping studies of the total neutronic/hydrodynamic interactions and is capable of performing phenomenological investigations of hypothetical problems ranging from the high ramp disassembly calculations, performed in the past by the Lagrangian code VENUS, to the study of recriticality in boiling pools of fuel and steel. POOL specifically includes, in at least parametric fashion, the following phenomena: 1. intra- and inter-element heat transfer by diffusion, convection, and radiation for both fuel and steel inside the pool and at the boundaries 2. local vapor generation and concurrent local pressurization 3. hydrodynamic behavior using the inviscid Navier-Stokes equations in a Eulerian formulation. Sample results are shown for boil-up of an initially quiescent dense pool of fuel and steel. Subroutine POOL was modified by removing the free surface portion of the calculation and the associated expansion of the Eulerian Grid. The combined code, known as FX2-P00L, was used to perform prompt burst calculations for two comparison cases for a lOOO-MW(th) demolike reactor. Good agreement is shown between FX2-POOL and VENUS II for these two hypothetical situations, indicating that the hydrodynamic and thermodynamic assumptions made in POOL are accurate enough for prompt burst analysis and compare well with the VENUS models.