ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Three nations, three ways to recycle plastic waste with nuclear technology
Plastic waste pollutes oceans, streams, and bloodstreams. Nations in Asia and the Pacific are working with the International Atomic Energy Agency through the Nuclear Technology for Controlling Plastic Pollution (NUTEC Plastics) initiative to tackle the problem. Launched in 2020, NUTEC Plastics is focused on using nuclear technology to both track the flow of microplastics and improve upstream plastic recycling before discarded plastic can enter the ecosystem. Irradiation could target hard-to-recycle plastics and the development of bio-based plastics, offering sustainable alternatives to conventional plastic products and building a “circular economy” for plastics, according to the IAEA.
Kanji Tasaka
Nuclear Science and Engineering | Volume 62 | Number 1 | January 1977 | Pages 167-174
Technical Note | doi.org/10.13182/NSE77-A26948
Articles are hosted by Taylor and Francis Online.
Neutron capture effects on the decay power of fission products have been examined by varying the fissile nuclide, neutron spectrum, neutron flux, and irradiation and cooling times. Neutron capture transformations of fission products usually increase the decay power. However, at short cooling times, i.e., <C104 s, the capture effects are small, especially in a thermal reactor, where the negative contribution of135Xe offsets the positive contributions of other nuclides. The capture effect exhibits peaks at cooling times of 106 and 108 s and becomes negligible at 109 s. The former peak results mainly from the increases in the activities of103Ru, 134Cs, 136 Cs, 148Pm, 148Pm, and 156Eu, and the latter by activities of 134 Cs and 154Eu. The capture effect increases with increase of the flux level or irradiation time, and it is approximately proportional to the integrated flux at long cooling times. There is only a slight difference between the capture effect of two thermal reactors with epithermal indices of 0.1 and 0.2. In fast reactors, the effect is smaller than in thermal reactors at cooling times over 105 s, and depends only a little on the fissile nuclide. The decay power in fast reactors depends on the cross-section library selected to less than ∼ 1%.