ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Three nations, three ways to recycle plastic waste with nuclear technology
Plastic waste pollutes oceans, streams, and bloodstreams. Nations in Asia and the Pacific are working with the International Atomic Energy Agency through the Nuclear Technology for Controlling Plastic Pollution (NUTEC Plastics) initiative to tackle the problem. Launched in 2020, NUTEC Plastics is focused on using nuclear technology to both track the flow of microplastics and improve upstream plastic recycling before discarded plastic can enter the ecosystem. Irradiation could target hard-to-recycle plastics and the development of bio-based plastics, offering sustainable alternatives to conventional plastic products and building a “circular economy” for plastics, according to the IAEA.
W. L. Filippone
Nuclear Science and Engineering | Volume 62 | Number 1 | January 1977 | Pages 69-91
Technical Paper | doi.org/10.13182/NSE77-A26940
Articles are hosted by Taylor and Francis Online.
Several new formulations of the response matrix doubling technique, which employ the combined use of a coarse and fine angular mesh, have been developed. The fine angular mesh is used to represent particle distributions that are highly anisotropic, while the coarse angular mesh is used for angular distributions that are more nearly isotropic. The fine and coarse mesh distributions are related by nonsquare response matrices. Calculations of transmitted and reflected currents for simple one-speed slab problems indicate that the new formulations can greatly improve the efficiency of response matrix calculations. Reflected currents calculated by using one of the new response matrix formulations were found to be 9 to 40 times more accurate than those obtained from conventional response matrix calculations using comparable computational effort. Improvements in transmitted current calculations were nearly as great. The new formulations also are applicable to more realistic calculations. The results of a multigroup calculation were quite encouraging. For energy-dependent problems, we can use a coarse and fine energy mesh as well as a coarse and fine angular mesh, so the potential for improvement appears to be even greater than for one-speed problems.