ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
High temperature fission chambers engineered for AMR/SMR safety and performance
As the global energy landscape shifts towards safer, smaller, and more flexible nuclear power, Small Modular Reactors (SMRs) and Gen. IV* technologies are at the forefront of innovation. These advanced designs pose new challenges in size, efficiency, and operating environment that traditional instrumentation and control solutions aren’t always designed to handle.
Jim E. Morel, Anil Prinja, John M. McGhee, Todd A. Wareing, Brian C. Franke
Nuclear Science and Engineering | Volume 156 | Number 2 | June 2007 | Pages 154-163
Technical Paper | doi.org/10.13182/NSE07-A2693
Articles are hosted by Taylor and Francis Online.
A new Sn discretization of the angular Fokker-Planck operator used in three-dimensional calculations is derived for product quadrature sets. It is straightforward to define discretizations that preserve the null space and zeroth angular moment of the analytic operator and are self-adjoint, monotone, and nonpositive-definite. Our new discretization differs from more straightforward discretizations in that it also preserves the three first angular moments of the analytic operator when applied in conjunction with product quadrature sets constructed with Chebychev azimuthal quadrature. Otherwise, it preserves only two of the three first angular moments. Computational results are presented that demonstrate the superiority of this new discretization relative to a straightforward discretization. Two-dimensional versions of the new discretization are also given for x-y and r-z geometries.