ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Three nations, three ways to recycle plastic waste with nuclear technology
Plastic waste pollutes oceans, streams, and bloodstreams. Nations in Asia and the Pacific are working with the International Atomic Energy Agency through the Nuclear Technology for Controlling Plastic Pollution (NUTEC Plastics) initiative to tackle the problem. Launched in 2020, NUTEC Plastics is focused on using nuclear technology to both track the flow of microplastics and improve upstream plastic recycling before discarded plastic can enter the ecosystem. Irradiation could target hard-to-recycle plastics and the development of bio-based plastics, offering sustainable alternatives to conventional plastic products and building a “circular economy” for plastics, according to the IAEA.
Bengt G. Carlson
Nuclear Science and Engineering | Volume 61 | Number 3 | November 1976 | Pages 408-425
Technical Paper | doi.org/10.13182/NSE76-A26927
Articles are hosted by Taylor and Francis Online.
A general method of characteristics for solving the multigroup transport equation is developed. This is combined with an adaptive difference scheme, called the modified diamond scheme, and is then applied to the finite difference form of the equation. This formulation is obtained from the discrete ordinates equation, which in turn derives from the multigroup equation, both on the basis of consistency arguments. In this connection two forms of the multigroup equation are used, and the diffusion and other important limits also have a bearing on the final difference equation. The new approaches resolve a number of theoretical and practical difficulties with Sn-type transport calculations, in particular in curved and multidimensional geometries. They lead to a firmer basis for discrete ordinates quadrature sets and to better control, mesh cell by mesh cell, over flux extrapolation, including methods to smooth out unwanted flux oscillations. The total effect is a more consistent treatment of the transport equation together with improved accuracy, fewer breakdowns, and more speed in the calculations, while keeping close to the physics of the problem and retaining the basic simplicity of the difference approach.