ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Three nations, three ways to recycle plastic waste with nuclear technology
Plastic waste pollutes oceans, streams, and bloodstreams. Nations in Asia and the Pacific are working with the International Atomic Energy Agency through the Nuclear Technology for Controlling Plastic Pollution (NUTEC Plastics) initiative to tackle the problem. Launched in 2020, NUTEC Plastics is focused on using nuclear technology to both track the flow of microplastics and improve upstream plastic recycling before discarded plastic can enter the ecosystem. Irradiation could target hard-to-recycle plastics and the development of bio-based plastics, offering sustainable alternatives to conventional plastic products and building a “circular economy” for plastics, according to the IAEA.
Harvey J. Amster, K. Cheuk Chan
Nuclear Science and Engineering | Volume 61 | Number 3 | November 1976 | Pages 388-398
Technical Paper | doi.org/10.13182/NSE76-A26925
Articles are hosted by Taylor and Francis Online.
An elementary function for the collision density of neutrons slowing down from a plane source in hydrogen is synthesized through a set of schemes incorporating several known explicit features of the exact solution. First, the Marshak distribution is assigned a distorted lethargy variable that makes its zeroth and second spatial moments exact at all lethargies while automatically preserving its detailed accuracy at large lethargies. The same exact moments are also required of a specific functional form able to assume the correct spatial dependence at small lethargies. Then, a linear combination of these functions is constructed with coefficients making the two moments and the first spatial derivative at the source plane exact at all lethargies. The resulting distribution automatically becomes correct at both lethargy extremes. In addition, a remaining lethargy-dependent parameter makes the fourth spatial moment exact at all lethargies except within a finite interval of intermediate values, where its error must reach a maximum of 2.7%. Extraneous roots from multiple bifurcations of the parameter are identified by their unphysical implications. For computational simplicity, both this parameter and the incorporated function for the exact spatial derivative at the source plane are replaced by fitted elementary functions. The resulting expression for the collision density agrees very closely with McInerney's Monte Carlo calculations. Some extensions are described in a separate Note.