ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Three nations, three ways to recycle plastic waste with nuclear technology
Plastic waste pollutes oceans, streams, and bloodstreams. Nations in Asia and the Pacific are working with the International Atomic Energy Agency through the Nuclear Technology for Controlling Plastic Pollution (NUTEC Plastics) initiative to tackle the problem. Launched in 2020, NUTEC Plastics is focused on using nuclear technology to both track the flow of microplastics and improve upstream plastic recycling before discarded plastic can enter the ecosystem. Irradiation could target hard-to-recycle plastics and the development of bio-based plastics, offering sustainable alternatives to conventional plastic products and building a “circular economy” for plastics, according to the IAEA.
S. R. Bierman, E. D. Clayton
Nuclear Science and Engineering | Volume 61 | Number 3 | November 1976 | Pages 370-376
Technical Paper | doi.org/10.13182/NSE76-A26923
Articles are hosted by Taylor and Francis Online.
The results from a series of criticality experiments with three different mixtures of oxides of plutonium and uranium are presented. The fuel mixtures consisted of 235U-depleted uranium homogenized with ∼8, 15, and 30 wt% plutonium and blended, homogeneously, with polystyrene to achieve H:(Pu + U) atomic ratios of ∼7, 3, and 3, respectively. Critical sizes are given for rectangular parallelepipeds of each of the fuels fully reflected with a methacrylate plastic (Plexiglas). Critical sizes are also given for unreflected parallelepipeds of the 30-wt% plutonium-enriched fuel mixture. For the 30-wt% plutonium-enriched mixture, sufficient fuel was available to permit determining that the critical thickness of a fully reflected slab of this material, infinite in two dimensions, was 12.93 + 0.14 cm. Comparisons were made between the critical assemblies and calculational results using ENDF/B-III cross sections and the KENO and DTF-IV computer codes. Wherever comparisons could be made, the DTF-IV and KENO results were within 1% of each other; however, some of the comparisons between calculations and experiments differed by 2 to 3% in keff.